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FIG. 2: (Color on line) Temperature profile of the electron
antineutrino surface seen from the z axis. The black frame,
x = [�70, 75], y = [�75, 70] km, encloses the antineutrino
surface. The temperature scale (on the left) goes from blue
T = 2 MeV, to red T ⇠ 14 MeV. The black circular area
represents the black hole boundary, r = 2r

s

.

Because of the presence of the black hole the above
quantities will di↵er from those measured by an observer
at infinity. A source located at a distance r from a black
hole emitting at energy E will be observed at infinity to
have an energy, [38],

E⇤ =
E

1 + z
. (28)

The redshift factor 1 + z consists of a Doppler part and
a gravitational part (see Ref. [37] for a derivation). The
Doppler term depends on the ratio of ⌦, the angular
velocity of the emitting gas, to the speed of light. We
find that the Doppler term is several orders of magnitude
smaller than the gravitational term. Therefore, we use

1
1 + z

= |g00|1/2, (29)

and then the energy observed at infinity is

E⇤ = |g00|1/2E, (30)

where g00 is determined by the space time metric. In the
case of a non-charged, rotating black hole the curvature
of the line element can be written in the Kerr geometry
as [38],

ds2 = �(�/⇠2)
⇥
dt� a2 sin2 ✓d�

⇤2

+
�
sin2 ✓/⇠2

� ⇥
(r2 + a2)d�� adt

⇤2

+
�
⇠2/�

�
dr2 + ⇠2d✓2, (31)

FIG. 3: (Color on line) Electron antineutrino surface seen at
some inclination angle (see the x, y, z axis on the lower left
corner). The height corresponds to h

⌫

as in Eq. 2. The color
scale corresponds to the neutrino temperatures, also shown in
Fig. 2. The black area in the center represents the boundary
with the BH, r = 2r

s

.

where

� = r2 � rsr + a2

⇠2 = r2 + a2 cos2 ✓, (32)

and the Schwarzchild radius rs = 2M . g00 is given by

g00 = �
✓

�� a2 sin2 ✓

⇠2

◆
= �

✓
1� rsr

⇠2

◆
. (33)

Note that the parameter a given above is the spin of the
black hole, not the disk. Before the merger the spin pa-
rameter of the black hole is a = 0.6. The Kerr metric re-
duces to the Schwarzschild case when a = 0. We will use
the Kerr metric to describe the neutrino energy redshift.
However, for simplicity (and because the spin parameter
introduces only a small correction unless it is nearly one)
we use the Schwarzschild metric to calculate corrections
due to the neutrino ray bending. An observer at infinity,
from a BH will detect a luminosity L⇤ = |g00|L from an
object which has a luminosity L [39]. For our disk we
calculate the redshift in energy |g00(r⌫)| as in Eq.33 at
the point of decoupling r2

⌫ = h2
⌫ + ⇢2

⌫ , with h⌫ and ⇢⌫

the corresponding cylindrical emission coordinates. Here
again L⇤

⌫ is the total emission rate and does not take into
account a specific location of the observer [40].Then we
have,
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Unique geometry of disks lends itself to varied 
neutrino oscillations

Includes a new type of oscillation occurring 
when neutrino self-interactions cancel the 
matter term.

The neutrino oscillations can have an impact on 
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